3.73 \(\int (e x)^{-1+2 n} (a+b \sec (c+d x^n)) \, dx\)

Optimal. Leaf size=149 \[ \frac {a (e x)^{2 n}}{2 e n}+\frac {i b x^{-2 n} (e x)^{2 n} \text {Li}_2\left (-i e^{i \left (d x^n+c\right )}\right )}{d^2 e n}-\frac {i b x^{-2 n} (e x)^{2 n} \text {Li}_2\left (i e^{i \left (d x^n+c\right )}\right )}{d^2 e n}-\frac {2 i b x^{-n} (e x)^{2 n} \tan ^{-1}\left (e^{i \left (c+d x^n\right )}\right )}{d e n} \]

[Out]

1/2*a*(e*x)^(2*n)/e/n-2*I*b*(e*x)^(2*n)*arctan(exp(I*(c+d*x^n)))/d/e/n/(x^n)+I*b*(e*x)^(2*n)*polylog(2,-I*exp(
I*(c+d*x^n)))/d^2/e/n/(x^(2*n))-I*b*(e*x)^(2*n)*polylog(2,I*exp(I*(c+d*x^n)))/d^2/e/n/(x^(2*n))

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {14, 4208, 4204, 4181, 2279, 2391} \[ \frac {i b x^{-2 n} (e x)^{2 n} \text {PolyLog}\left (2,-i e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {i b x^{-2 n} (e x)^{2 n} \text {PolyLog}\left (2,i e^{i \left (c+d x^n\right )}\right )}{d^2 e n}+\frac {a (e x)^{2 n}}{2 e n}-\frac {2 i b x^{-n} (e x)^{2 n} \tan ^{-1}\left (e^{i \left (c+d x^n\right )}\right )}{d e n} \]

Antiderivative was successfully verified.

[In]

Int[(e*x)^(-1 + 2*n)*(a + b*Sec[c + d*x^n]),x]

[Out]

(a*(e*x)^(2*n))/(2*e*n) - ((2*I)*b*(e*x)^(2*n)*ArcTan[E^(I*(c + d*x^n))])/(d*e*n*x^n) + (I*b*(e*x)^(2*n)*PolyL
og[2, (-I)*E^(I*(c + d*x^n))])/(d^2*e*n*x^(2*n)) - (I*b*(e*x)^(2*n)*PolyLog[2, I*E^(I*(c + d*x^n))])/(d^2*e*n*
x^(2*n))

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4181

Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*ArcTanh[E
^(I*k*Pi)*E^(I*(e + f*x))])/f, x] + (-Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))],
 x], x] + Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e,
f}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 4204

Int[(x_)^(m_.)*((a_.) + (b_.)*Sec[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*Sec[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[
(m + 1)/n], 0] && IntegerQ[p]

Rule 4208

Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sec[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[(e^IntPart[m]*(e*x
)^FracPart[m])/x^FracPart[m], Int[x^m*(a + b*Sec[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]

Rubi steps

\begin {align*} \int (e x)^{-1+2 n} \left (a+b \sec \left (c+d x^n\right )\right ) \, dx &=\int \left (a (e x)^{-1+2 n}+b (e x)^{-1+2 n} \sec \left (c+d x^n\right )\right ) \, dx\\ &=\frac {a (e x)^{2 n}}{2 e n}+b \int (e x)^{-1+2 n} \sec \left (c+d x^n\right ) \, dx\\ &=\frac {a (e x)^{2 n}}{2 e n}+\frac {\left (b x^{-2 n} (e x)^{2 n}\right ) \int x^{-1+2 n} \sec \left (c+d x^n\right ) \, dx}{e}\\ &=\frac {a (e x)^{2 n}}{2 e n}+\frac {\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname {Subst}\left (\int x \sec (c+d x) \, dx,x,x^n\right )}{e n}\\ &=\frac {a (e x)^{2 n}}{2 e n}-\frac {2 i b x^{-n} (e x)^{2 n} \tan ^{-1}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}-\frac {\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname {Subst}\left (\int \log \left (1-i e^{i (c+d x)}\right ) \, dx,x,x^n\right )}{d e n}+\frac {\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname {Subst}\left (\int \log \left (1+i e^{i (c+d x)}\right ) \, dx,x,x^n\right )}{d e n}\\ &=\frac {a (e x)^{2 n}}{2 e n}-\frac {2 i b x^{-n} (e x)^{2 n} \tan ^{-1}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}+\frac {\left (i b x^{-2 n} (e x)^{2 n}\right ) \operatorname {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {\left (i b x^{-2 n} (e x)^{2 n}\right ) \operatorname {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{i \left (c+d x^n\right )}\right )}{d^2 e n}\\ &=\frac {a (e x)^{2 n}}{2 e n}-\frac {2 i b x^{-n} (e x)^{2 n} \tan ^{-1}\left (e^{i \left (c+d x^n\right )}\right )}{d e n}+\frac {i b x^{-2 n} (e x)^{2 n} \text {Li}_2\left (-i e^{i \left (c+d x^n\right )}\right )}{d^2 e n}-\frac {i b x^{-2 n} (e x)^{2 n} \text {Li}_2\left (i e^{i \left (c+d x^n\right )}\right )}{d^2 e n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.65, size = 188, normalized size = 1.26 \[ \frac {(e x)^{2 n} \cos \left (c+d x^n\right ) \left (a+b \sec \left (c+d x^n\right )\right ) \left (a+\frac {b x^{-2 n} \left (2 i \left (\text {Li}_2\left (-i e^{-i \left (d x^n+c\right )}\right )-\text {Li}_2\left (i e^{-i \left (d x^n+c\right )}\right )\right )+\left (-2 c-2 d x^n+\pi \right ) \left (\log \left (1-i e^{-i \left (c+d x^n\right )}\right )-\log \left (1+i e^{-i \left (c+d x^n\right )}\right )\right )-(\pi -2 c) \log \left (\cot \left (\frac {1}{4} \left (2 c+2 d x^n+\pi \right )\right )\right )\right )}{d^2}\right )}{2 e n \left (a \cos \left (c+d x^n\right )+b\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*x)^(-1 + 2*n)*(a + b*Sec[c + d*x^n]),x]

[Out]

((e*x)^(2*n)*Cos[c + d*x^n]*(a + (b*((-2*c + Pi - 2*d*x^n)*(Log[1 - I/E^(I*(c + d*x^n))] - Log[1 + I/E^(I*(c +
 d*x^n))]) - (-2*c + Pi)*Log[Cot[(2*c + Pi + 2*d*x^n)/4]] + (2*I)*(PolyLog[2, (-I)/E^(I*(c + d*x^n))] - PolyLo
g[2, I/E^(I*(c + d*x^n))])))/(d^2*x^(2*n)))*(a + b*Sec[c + d*x^n]))/(2*e*n*(b + a*Cos[c + d*x^n]))

________________________________________________________________________________________

fricas [B]  time = 1.48, size = 470, normalized size = 3.15 \[ \frac {a d^{2} e^{2 \, n - 1} x^{2 \, n} - b c e^{2 \, n - 1} \log \left (\cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right ) + i\right ) + b c e^{2 \, n - 1} \log \left (\cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right ) + i\right ) - b c e^{2 \, n - 1} \log \left (-\cos \left (d x^{n} + c\right ) + i \, \sin \left (d x^{n} + c\right ) + i\right ) + b c e^{2 \, n - 1} \log \left (-\cos \left (d x^{n} + c\right ) - i \, \sin \left (d x^{n} + c\right ) + i\right ) - i \, b e^{2 \, n - 1} {\rm Li}_2\left (i \, \cos \left (d x^{n} + c\right ) + \sin \left (d x^{n} + c\right )\right ) - i \, b e^{2 \, n - 1} {\rm Li}_2\left (i \, \cos \left (d x^{n} + c\right ) - \sin \left (d x^{n} + c\right )\right ) + i \, b e^{2 \, n - 1} {\rm Li}_2\left (-i \, \cos \left (d x^{n} + c\right ) + \sin \left (d x^{n} + c\right )\right ) + i \, b e^{2 \, n - 1} {\rm Li}_2\left (-i \, \cos \left (d x^{n} + c\right ) - \sin \left (d x^{n} + c\right )\right ) + {\left (b d e^{2 \, n - 1} x^{n} + b c e^{2 \, n - 1}\right )} \log \left (i \, \cos \left (d x^{n} + c\right ) + \sin \left (d x^{n} + c\right ) + 1\right ) - {\left (b d e^{2 \, n - 1} x^{n} + b c e^{2 \, n - 1}\right )} \log \left (i \, \cos \left (d x^{n} + c\right ) - \sin \left (d x^{n} + c\right ) + 1\right ) + {\left (b d e^{2 \, n - 1} x^{n} + b c e^{2 \, n - 1}\right )} \log \left (-i \, \cos \left (d x^{n} + c\right ) + \sin \left (d x^{n} + c\right ) + 1\right ) - {\left (b d e^{2 \, n - 1} x^{n} + b c e^{2 \, n - 1}\right )} \log \left (-i \, \cos \left (d x^{n} + c\right ) - \sin \left (d x^{n} + c\right ) + 1\right )}{2 \, d^{2} n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+2*n)*(a+b*sec(c+d*x^n)),x, algorithm="fricas")

[Out]

1/2*(a*d^2*e^(2*n - 1)*x^(2*n) - b*c*e^(2*n - 1)*log(cos(d*x^n + c) + I*sin(d*x^n + c) + I) + b*c*e^(2*n - 1)*
log(cos(d*x^n + c) - I*sin(d*x^n + c) + I) - b*c*e^(2*n - 1)*log(-cos(d*x^n + c) + I*sin(d*x^n + c) + I) + b*c
*e^(2*n - 1)*log(-cos(d*x^n + c) - I*sin(d*x^n + c) + I) - I*b*e^(2*n - 1)*dilog(I*cos(d*x^n + c) + sin(d*x^n
+ c)) - I*b*e^(2*n - 1)*dilog(I*cos(d*x^n + c) - sin(d*x^n + c)) + I*b*e^(2*n - 1)*dilog(-I*cos(d*x^n + c) + s
in(d*x^n + c)) + I*b*e^(2*n - 1)*dilog(-I*cos(d*x^n + c) - sin(d*x^n + c)) + (b*d*e^(2*n - 1)*x^n + b*c*e^(2*n
 - 1))*log(I*cos(d*x^n + c) + sin(d*x^n + c) + 1) - (b*d*e^(2*n - 1)*x^n + b*c*e^(2*n - 1))*log(I*cos(d*x^n +
c) - sin(d*x^n + c) + 1) + (b*d*e^(2*n - 1)*x^n + b*c*e^(2*n - 1))*log(-I*cos(d*x^n + c) + sin(d*x^n + c) + 1)
 - (b*d*e^(2*n - 1)*x^n + b*c*e^(2*n - 1))*log(-I*cos(d*x^n + c) - sin(d*x^n + c) + 1))/(d^2*n)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sec \left (d x^{n} + c\right ) + a\right )} \left (e x\right )^{2 \, n - 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+2*n)*(a+b*sec(c+d*x^n)),x, algorithm="giac")

[Out]

integrate((b*sec(d*x^n + c) + a)*(e*x)^(2*n - 1), x)

________________________________________________________________________________________

maple [C]  time = 1.87, size = 873, normalized size = 5.86 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(-1+2*n)*(a+b*sec(c+d*x^n)),x)

[Out]

1/2*a/n*x*exp(1/2*(-1+2*n)*(-I*Pi*csgn(I*e)*csgn(I*x)*csgn(I*e*x)+I*Pi*csgn(I*e)*csgn(I*e*x)^2+I*Pi*csgn(I*x)*
csgn(I*e*x)^2-I*Pi*csgn(I*e*x)^3+2*ln(x)+2*ln(e)))+I/d/n/e*(e^n)^2*b*ln(1+exp(I*x^n*d)*(-exp(2*I*c))^(1/2))*x^
n*(-exp(2*I*c))^(1/2)*(-1)^(1/2*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*(-1)^(-1/2*csgn(I*x)*csgn(I*e*x)^2)*(-1)^(-1/
2*csgn(I*e)*csgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e*x)^3)*exp(I*Pi*n*csgn(I*e)*csgn(I*e*x)^2)*exp(I*Pi*n*csgn(I*x)
*csgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*exp(1/2*I*Pi*csgn(I*e*x)^3)*exp(-I*c)-I/d/n/e*(e^
n)^2*b*ln(1-exp(I*x^n*d)*(-exp(2*I*c))^(1/2))*x^n*(-exp(2*I*c))^(1/2)*(-1)^(1/2*csgn(I*e)*csgn(I*x)*csgn(I*e*x
))*(-1)^(-1/2*csgn(I*x)*csgn(I*e*x)^2)*(-1)^(-1/2*csgn(I*e)*csgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e*x)^3)*exp(I*Pi
*n*csgn(I*e)*csgn(I*e*x)^2)*exp(I*Pi*n*csgn(I*x)*csgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*e
xp(1/2*I*Pi*csgn(I*e*x)^3)*exp(-I*c)+1/d^2/n/e*(e^n)^2*b*dilog(1+exp(I*x^n*d)*(-exp(2*I*c))^(1/2))*(-exp(2*I*c
))^(1/2)*(-1)^(1/2*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*(-1)^(-1/2*csgn(I*x)*csgn(I*e*x)^2)*(-1)^(-1/2*csgn(I*e)*c
sgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e*x)^3)*exp(I*Pi*n*csgn(I*e)*csgn(I*e*x)^2)*exp(I*Pi*n*csgn(I*x)*csgn(I*e*x)^
2)*exp(-I*Pi*n*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*exp(1/2*I*Pi*csgn(I*e*x)^3)*exp(-I*c)-1/d^2/n/e*(e^n)^2*b*dilo
g(1-exp(I*x^n*d)*(-exp(2*I*c))^(1/2))*(-exp(2*I*c))^(1/2)*(-1)^(1/2*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*(-1)^(-1/
2*csgn(I*x)*csgn(I*e*x)^2)*(-1)^(-1/2*csgn(I*e)*csgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e*x)^3)*exp(I*Pi*n*csgn(I*e)
*csgn(I*e*x)^2)*exp(I*Pi*n*csgn(I*x)*csgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*exp(1/2*I*Pi*
csgn(I*e*x)^3)*exp(-I*c)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ 2 \, b e^{2 \, n} \int \frac {x^{2 \, n} \cos \left (2 \, d x^{n} + 2 \, c\right ) \cos \left (d x^{n} + c\right ) + x^{2 \, n} \sin \left (2 \, d x^{n} + 2 \, c\right ) \sin \left (d x^{n} + c\right ) + x^{2 \, n} \cos \left (d x^{n} + c\right )}{e x \cos \left (2 \, d x^{n} + 2 \, c\right )^{2} + e x \sin \left (2 \, d x^{n} + 2 \, c\right )^{2} + 2 \, e x \cos \left (2 \, d x^{n} + 2 \, c\right ) + e x}\,{d x} + \frac {\left (e x\right )^{2 \, n} a}{2 \, e n} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+2*n)*(a+b*sec(c+d*x^n)),x, algorithm="maxima")

[Out]

2*b*e^(2*n)*integrate((x^(2*n)*cos(2*d*x^n + 2*c)*cos(d*x^n + c) + x^(2*n)*sin(2*d*x^n + 2*c)*sin(d*x^n + c) +
 x^(2*n)*cos(d*x^n + c))/(e*x*cos(2*d*x^n + 2*c)^2 + e*x*sin(2*d*x^n + 2*c)^2 + 2*e*x*cos(2*d*x^n + 2*c) + e*x
), x) + 1/2*(e*x)^(2*n)*a/(e*n)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (a+\frac {b}{\cos \left (c+d\,x^n\right )}\right )\,{\left (e\,x\right )}^{2\,n-1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x^n))*(e*x)^(2*n - 1),x)

[Out]

int((a + b/cos(c + d*x^n))*(e*x)^(2*n - 1), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e x\right )^{2 n - 1} \left (a + b \sec {\left (c + d x^{n} \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(-1+2*n)*(a+b*sec(c+d*x**n)),x)

[Out]

Integral((e*x)**(2*n - 1)*(a + b*sec(c + d*x**n)), x)

________________________________________________________________________________________